If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4w^2+11w-3=0
a = 4; b = 11; c = -3;
Δ = b2-4ac
Δ = 112-4·4·(-3)
Δ = 169
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{169}=13$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(11)-13}{2*4}=\frac{-24}{8} =-3 $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(11)+13}{2*4}=\frac{2}{8} =1/4 $
| (14/2)-(3x2)=1 | | (b-9)(b+4)=b2-11 | | 9x+2x=10 | | 25–k=20 | | 5x=4=34 | | 2x-16x+48=8 | | -5(w+8)=3w-16 | | -2x+24=4(x+9) | | 6d=3.7 | | 2(w-1)=6w-34 | | 3(5x+3)=-5(4x-4)+4x | | 0.3x+4.1=0.2x+2.7 | | 2(3x+2)=-5(2x-3) | | -2(u-40)=3(u-5) | | -15(7-w)=6 | | 5(x-1)+3=-7 | | (5x/8)-6=x-2/4 | | 5x/8-6=x-2/4 | | 24-42=3(x-1)-6 | | 7v+5(v+2)=34 | | -4x=6-(-6) | | -7(x+1)-10=36+3 | | 5(x+4)+3=28 | | H(x)=3-29x | | x/5^4=125 | | 6=-8x+3(x-8) | | 4(x-2)+1=13 | | H(t)=-16t^2+304t | | 3(5-3m)=27 | | (m+8)(-2)=12 | | 2(w+5)-8w=-20 | | -7(n-6)=70 |